Forest plot module
mod_forest.Rd
Display a hybrid table/forest plot of arbitrary statistics (correlations, odds ratios, ...) computed on dataset parameters over a single visit.
Usage
forest_UI(
id,
numeric_numeric_function_names = character(0),
numeric_factor_function_names = character(0),
default_function = NULL
)
forest_server(
id,
bm_dataset,
group_dataset,
dataset_name = shiny::reactive(character(0)),
numeric_numeric_functions = list(),
numeric_factor_functions = list(),
subjid_var = "SUBJID",
cat_var = "PARCAT",
par_var = "PARAM",
visit_var = "AVISIT",
value_vars = c("AVAL", "PCHG"),
default_cat = NULL,
default_par = NULL,
default_visit = NULL,
default_value = NULL,
default_var = NULL,
default_group = NULL,
default_categorical_A = NULL,
default_categorical_B = NULL
)
mod_forest(
module_id,
bm_dataset_name,
group_dataset_name,
numeric_numeric_functions = list(),
numeric_factor_functions = list(),
subjid_var = "SUBJID",
cat_var = "PARCAT",
par_var = "PARAM",
visit_var = "AVISIT",
value_vars = c("AVAL", "PCHG"),
default_cat = NULL,
default_par = NULL,
default_visit = NULL,
default_value = NULL,
default_var = NULL,
default_group = NULL,
default_categorical_A = NULL,
default_categorical_B = NULL,
bm_dataset_disp,
group_dataset_disp
)
Arguments
- id
[character(1)]
Shiny ID
- numeric_numeric_function_names, numeric_factor_function_names
[character(1)]
Vectors of names of functions passed as
numeric_numeric_functions
andnumeric_factor_functions
toforest_server
- default_function
[character(1)]
Default function
- bm_dataset
[data.frame()]
An ADBM-like dataset similar in structure to the one in this example, with one record per subject per parameter per analysis visit.
It should have, at least, the columns specified by the parameters
subjid_var
,cat_var
,par_var
,visit_var
andvalue_vars
. The semantics of these columns are as described in the CDISC standard for variables USUBJID, PARCAT, PARAM, AVISIT and AVAL, respectively.- group_dataset
[data.frame()]
An ADSL-like dataset similar in structure to the one in this example, with one record per subject.
It should contain, at least, the column specified by the parameter
subjid_var
.- dataset_name
[shiny::reactive(*)]
A reactive that indicates a possible change in the column structure of any of the two datasets
- numeric_numeric_functions, numeric_factor_functions
[function(n)]
Named lists of functions. Each function needs to take two parameters and produce a list of four numbers with the following names:
result, CI_lower_limit, CI_upper_limit and p_value
The module will offer the functions as part of its interface and will run each function if selected.
The values returned by the functions are be captured on the output table and are also displayed as part of the forest plot.
numeric_numeric_functions
take two numeric parameters (e.g.dv.explorer.parameter::pearson_correlation
) andnumeric_factor_functions
should accept a numeric first parameter and a categorical (factor) second parameter (e.g.dv.explorer.parameter::odds_ratio
).- subjid_var
[character(1)]
Column corresponding to the subject ID
- cat_var, par_var, visit_var
[character(1)]
Columns from
bm_dataset
that correspond to the parameter category, parameter and visit- value_vars
[character(n)]
Columns from
bm_dataset
that correspond to values of the parameters- default_cat, default_par, default_visit, default_value
[character(1)|NULL]
Default values for the selectors
- default_var, default_group, default_categorical_A, default_categorical_B
[character(1)|NULL]
Default values for the selectors
- module_id
Shiny ID
[character(1)]
Module identifier
- bm_dataset_name, group_dataset_name
[character(1)]
Dataset names
- bm_dataset_disp, group_dataset_disp
[mm_dispatcher(1)]
module manager dispatchers passed asbm_dataset
andgroup_dataset
toforest_server