Skip to contents

Display a heatmap of correlation coefficients (Pearson, Spearman) along with confidence intervals and p-values between dataset parameters over a single visit.

Usage

corr_hm_UI(
  id,
  default_cat = NULL,
  default_par = NULL,
  default_visit = NULL,
  default_corr_method = NULL
)

corr_hm_server(
  id,
  bm_dataset,
  subjid_var = "SUBJID",
  cat_var = "PARCAT",
  par_var = "PARAM",
  visit_var = "AVISIT",
  value_vars = c("AVAL", "PCHG"),
  default_value = NULL
)

mod_corr_hm(
  module_id,
  bm_dataset_name,
  subjid_var = "SUBJID",
  cat_var = "PARCAT",
  par_var = "PARAM",
  visit_var = "AVISIT",
  value_vars = "AVAL",
  default_cat = NULL,
  default_par = NULL,
  default_visit = NULL,
  default_value = NULL
)

Arguments

id

[character(1)]

Shiny ID

default_cat

Default selected categories

default_par

Default selected parameters

default_visit

Default selected visits

default_corr_method

Name of default correlation method

bm_dataset

[data.frame()]

An ADBM-like dataset similar in structure to the one in this example, with one record per subject per parameter per analysis visit.

It should have, at least, the columns specified by the parameters subjid_var, cat_var, par_var, visit_var and value_vars. The semantics of these columns are as described in the CDISC standard for variables USUBJID, PARCAT, PARAM, AVISIT and AVAL, respectively.

subjid_var

[character(1)]

Column corresponding to the subject ID

cat_var, par_var, visit_var

[character(1)]

Columns from bm_dataset that correspond to the parameter category, parameter and visit

value_vars

[character(n)]

Columns from bm_dataset that correspond to values of the parameters

default_value

[character(1)|NULL]

Default values for the selectors

module_id

Shiny ID [character(1)]

Module identifier

bm_dataset_name

[character(1)]

Biomarker dataset name

Functions

  • corr_hm_UI(): UI

  • corr_hm_server(): Server