compute_pfs()
computes the progression-free-survival rate at specified
times given a paramter sample.
Usage
compute_pfs(
model,
t,
parameter_sample = NULL,
warmup = 500L,
nsim = 1000L,
seed = NULL,
...
)
Arguments
- model
an object of class srpmodel containing prior information
- t
a vector of time-points at which the PFS rate should be computed
- parameter_sample
a stanfit object with samples from the respective model.
- warmup
integer, number of warm-up samples for the MCMC sampler before retaining samples; see
warmup
parameter inrstan::stan()
.- nsim
integer, number of samples to draw
- seed
integer, fixed random seed; NULL for no fixed seed
- ...
further arguments passed to method implementations
Examples
mdl <- create_srpmodel(A = define_srp_prior())
smpl <- sample_prior(mdl, nsim = 500, seed = 34L)
dplyr::filter(
compute_pfs(mdl, t = seq(0, 12), parameter_sample = smpl),
iter == 1
)
#> # A tibble: 13 × 4
#> iter group_id t pfs
#> <int> <chr> <dbl> <dbl>
#> 1 1 A 0 1
#> 2 1 A 1 0.887
#> 3 1 A 2 0.801
#> 4 1 A 3 0.743
#> 5 1 A 4 0.704
#> 6 1 A 5 0.677
#> 7 1 A 6 0.656
#> 8 1 A 7 0.639
#> 9 1 A 8 0.624
#> 10 1 A 9 0.610
#> 11 1 A 10 0.596
#> 12 1 A 11 0.583
#> 13 1 A 12 0.569