Skip to contents
This is RBesT version 1.7.3 (released 2024-01-02, git-sha 511a0f1)
library(clinDR)
Loading required package: rstan
Loading required package: StanHeaders

rstan version 2.32.6 (Stan version 2.32.2)
For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).
To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)
For within-chain threading using `reduce_sum()` or `map_rect()` Stan functions,
change `threads_per_chain` option:
rstan_options(threads_per_chain = 1)
Loading required package: shiny

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
setup
#' Display Parameters Table
#'
#' This function generates a markdown table displaying the names and values of parameters
#' from a named list.
#'
#' @param named_list A named list where each name represents a parameter name and the list
#'   element represents the parameter value. Date values in the list are automatically
#'   converted to character strings for display purposes.
#'
#' @return Prints a markdown table with two columns: "Parameter Name" and "Parameter Values".
#'   The function does not return a value but displays the table directly to the output.
#'
#' @importFrom knitr kable
#' @examples
#' params <- list("Start Date" = as.Date("2020-01-01"),
#'                "End Date" = as.Date("2020-12-31"),
#'                "Threshold" = 10)
#' display_params_table(params)
#'
#' @export
display_params_table <- function(named_list) {
  display_table <- data.frame()
  value_names <- data.frame()
  for (i in 1:length(named_list)) {
    # dates will display as numeric by default, so convert to char first
    if (class(named_list[[i]]) == "Date") {
      named_list[[i]] = as.character(named_list[[i]])
    }
    if (!is.null(names(named_list[[i]]))) {
      value_names <- rbind(value_names, paste(names(named_list[[i]]), collapse = ', '))
    }
    values <- data.frame(I(list(named_list[[i]])))
    display_table <- rbind(display_table, values)
  }
  
  round_numeric <- function(x, digits = 3) {
    if (is.numeric(x)) {
      return(round(x, digits))
    } else {
      return(x)
    }
  }
  
  display_table[1] <- lapply(display_table[1], function(sublist) {
    lapply(sublist, round_numeric)
  })
  
  class(display_table[[1]]) <- "list"
  
  if (nrow(value_names) == 0) {
    knitr::kable(
      cbind(names(named_list), display_table),
      col.names = c("Name", "Value")
    )
  } else {
    knitr::kable(
      cbind(names(named_list), value_names, display_table),
      col.names = c("Name", "Value Labels", "Value")
    )
  }
}

1 Introduction

This vignette demonstrates the application of the {BayesianMCPMod} package for analyzing a phase 2 dose-finding trial using the Bayesian MCPMod approach.

2 Prior Specification

Ideally, priors are grounded in historical data. This approach allows for the synthesis of prior knowledge with current data, enhancing the accuracy of trial evaluations.

The focus of this vignette is more generic, however. We specify weakly-informative priors across all dose groups to allow the trial data to have a stronger influence on the analysis.

dose_levels <- c(0, 2.5, 5, 10)

prior_list <- lapply(dose_levels, function(dose_group) {
  RBesT::mixnorm(weak = c(w = 1, m = 0, s = 200), sigma = 10) 
})

names(prior_list) <- c("Ctr", paste0("DG_", dose_levels[-1]))

3 Dose-Response Model Shapes

Candidate models are specified using the {DoseFinding} package. Models can be parameterized using guesstimates or by directly providing distribution parameters. Note that the linear candidate model does not require parameterization.

Note: The LinLog model is rarely used and not currently supported by BayesianMCPMod.

In the code below, the models are “guesstimated” using the DoseFinding::guesst function. The d option usually takes a single value (a dose level), and the corresponding p for the maximum effect achieved at d.

# Guesstimate estimation
exp_guesst  <- DoseFinding::guesst(
  model = "exponential", 
  d = 5, p = 0.2, Maxd = max(dose_levels)
)
emax_guesst <- DoseFinding::guesst(
  model = "emax",
  d = 2.5, p = 0.9
)
sigEmax_guesst <- DoseFinding::guesst(
  model = "sigEmax",
  d = c(2.5, 5), p = c(0.5, 0.95)
)
logistic_guesst <- DoseFinding::guesst(
  model = "logistic",
  d = c(5, 10), p = c(0.1, 0.85)
)

In some cases, you need to provide more information. For instance, sigEmax requires a pair of d and p values, and exponential requires the specification of the maximum dose for the trial (Maxd).

See the help files for model specifications by typing ?DoseFinding::guesst in your console

Of course, you can also specify the models directly on the parameter scale (without using DoseFinding::guesst).

For example, you can get a betaMod model by specifying delta1 and delta2 parameters (scale is assumed to be 1.2 of the maximum dose), or a quadratic model with the delta2 parameter.

betaMod_params <- c(delta1 = 1, delta2 = 1)
quadratic_params <- c(delta2 = -0.1)

Now, we can go ahead and create a Mods object, which will be used in the remainder of the vignette.

mods <- DoseFinding::Mods(
  linear      = NULL,
  # guesstimate scale
  exponential = exp_guesst,
  emax        = emax_guesst,
  sigEmax     = sigEmax_guesst,
  logistic    = logistic_guesst,
  # parameter scale
  betaMod     = betaMod_params,
  quadratic   = quadratic_params,
  # Options for all models
  doses       = dose_levels,
  maxEff      = -1,
  placEff     = -12.8
)

plot(mods)

The mods object we just created above contains the full model parameters, which can be helpful for understanding how the guesstimates are translated onto the parameter scale.

display_params_table(mods)
Name Value Labels Value
linear e0, delta -12.8, -0.1
exponential e0, e1, delta -12.800, -0.067, 3.607
emax e0, eMax, ed50 -12.800, -1.028, 0.278
sigEmax e0, eMax, ed50, h -12.800, -1.003, 2.500, 4.248
logistic e0, eMax, ed50, delta -12.797, -1.179, 7.794, 1.272
betaMod e0, eMax, delta1, delta2 -12.8, -1.0, 1.0, 1.0
quadratic e0, b1, b2 -12.80, -0.40, 0.04

And we can see the assumed treatment effects for the specified dose groups below:

knitr::kable(DoseFinding::getResp(mods, doses = dose_levels))
linear exponential emax sigEmax logistic betaMod quadratic
0 -12.80 -12.80000 -12.80000 -12.80000 -12.80000 -12.80000 -12.80
2.5 -13.05 -12.86667 -13.72500 -13.30138 -12.81551 -13.45972 -13.55
5 -13.30 -13.00000 -13.77368 -13.75263 -12.91538 -13.77222 -13.80
10 -13.80 -13.80000 -13.80000 -13.80000 -13.80000 -13.35556 -12.80

3.1 Trial Data

We will use the trial with ct.gov number NCT00735709 as our phase 2 trial data, available in the {clinDR} package (ClinicalTrials.gov 2024).

data("metaData")

trial_data <- dplyr::filter(
  dplyr::filter(tibble::tibble(metaData), bname == "BRINTELLIX"),
  primtime == 8,
  indication == "MAJOR DEPRESSIVE DISORDER",
  protid == 5
)

n_patients <- c(128, 124, 129, 122)

4 Posterior Calculation

In the first step of Bayesian MCPMod, the posterior is calculated by combining the prior information with the estimated results of the trial (Fleischer F 2022).

posterior <- getPosterior(
  prior_list = prior_list,
  mu_hat     = trial_data$rslt,
  S_hat      = trial_data$se,
  calc_ess = TRUE
)

knitr::kable(summary(posterior))
mean sd 2.5% 50.0% 97.5%
Ctr -10.90986 0.7079956 -12.29751 -10.90986 -9.522218
DG_2.5 -14.88981 0.7149954 -16.29117 -14.88981 -13.488444
DG_5 -15.08981 0.7119955 -16.48529 -15.08981 -13.694323
DG_10 -15.64979 0.7279952 -17.07664 -15.64979 -14.222948

5 Bayesian MCPMod Test Step

The testing step of Bayesian MCPMod is executed using a critical value on the probability scale and a pseudo-optimal contrast matrix.

The critical value is calculated using (re-estimated) contrasts for frequentist MCPMod to ensure error control when using weakly-informative priors.

A pseudo-optimal contrast matrix is generated based on the variability of the posterior distribution (see (Fleischer F 2022) for more details).

crit_pval <- getCritProb(
  mods           = mods,
  dose_levels    = dose_levels,
  se_new_trial   = trial_data$se,
  alpha_crit_val = 0.05
)

contr_mat <- getContr(
  mods         = mods,
  dose_levels  = dose_levels,
  sd_posterior = summary(posterior)[, 2]
)

Please note that there are different ways to derive the contrasts. The following code shows the implementation of some of these ways but it is not executed and the contrast specification above is used.

# i) the frequentist contrast
contr_mat_prior <- getContr(
  mods           = mods,
  dose_levels    = dose_levels,
  dose_weights   = n_patients,
  prior_list     = prior_list)
# ii) re-estimated frequentist contrasts
contr_mat_prior <- getContr(
  mods           = mods,
  dose_levels    = dose_levels,
  se_new_trial   = trial_data$se)
# iii)  Bayesian approach using number of patients for new trial and prior distribution
contr_mat_prior <- getContr(
  mods           = mods,
  dose_levels    = dose_levels,
  dose_weights   = n_patients,
  prior_list     = prior_list)

The Bayesian MCP testing step is then executed:

BMCP_result <- performBayesianMCP(
  posterior_list = posterior,
  contr          = contr_mat, 
  crit_prob_adj  = crit_pval)

Summary information:

BMCP_result
Bayesian Multiple Comparison Procedure

Summary:
  Sign: 1
  Critical Probability: 0.9845439
  Maximum Posterior Probability: 0.9999999

Effective Sample Size (ESS) per Dose Group:
NULL

Posterior Probabilities for Model Shapes:
       Model Probability
      linear   0.9999833
 exponential   0.9989153
        emax   0.9999999
     sigEmax   0.9999995
    logistic   0.9969619
     betaMod   0.9999974
   quadratic   0.9932859
Bayesian Multiple Comparison Procedure
     sign crit_prob_adj max_post_prob post_probs.linear post_probs.exponential
[1,]    1     0.9845439     0.9999999         0.9999833              0.9989153
     post_probs.emax post_probs.sigEmax post_probs.logistic post_probs.betaMod
[1,]       0.9999999          0.9999995           0.9969619          0.9999974
     post_probs.quadratic
[1,]            0.9932859
attr(,"essAvg")
   Ctr DG_2.5   DG_5  DG_10
 199.5  195.6  197.3  188.7 

The testing step is significant, indicating a non-flat dose-response shape. All models are significant, with the emax model indicating the greatest deviation from the null hypothesis.

6 Model Fitting and Visualization

In the model fitting step the posterior distribution is used as basis.

Both simplified and full fitting are performed.

For the simplified fit, the multivariate normal distribution of the control group is approximated and reduced by a one-dimensional normal distribution.

The actual fit (on this approximated posterior distribution) is then performed using generalized least squares criterion. In contrast, for the full fit, the non-linear optimization problem is addressed via the Nelder-Mead algorithm (Wikipedia 2024) implemented by the nloptr package.

The output of the fit includes information about the predicted effects for the included dose levels, the generalized AIC, and the corresponding weights.

For the considered case, the simplified and the full fit are very similar, so we present the full fit.

# If simple = TRUE, uses approx posterior
# Here we use complete posterior distribution
fit <- getModelFits(
  models      = mods,
  dose_levels = dose_levels,
  posterior   = posterior,
  simple      = FALSE)

Estimates for dose levels not included in the trial:

display_params_table(stats::predict(fit, doses = c(0, 2.5, 4, 5, 7, 10)))
Name Value
linear -12.368, -13.378, -13.984, -14.388, -15.196, -16.408
exponential -12.579, -13.356, -13.872, -14.237, -15.026, -16.366
emax -10.911, -14.815, -15.146, -15.269, -15.419, -15.539
sigEmax -10.911, -14.819, -15.104, -15.230, -15.406, -15.576
logistic -10.912, -14.849, -15.289, -15.364, -15.398, -15.402
betaMod -10.915, -14.792, -15.113, -15.263, -15.469, -15.565
quadratic -11.219, -14.050, -15.189, -15.714, -16.205, -15.541

Plots of fitted dose-response models and an AIC-based average model:

plot(fit)

To assess the uncertainty, one can additionally visualize credible bands (orange shaded areas, default levels are 50% and 95%).

These credible bands are calculated with a bootstrap method as follows:

  • Samples from the posterior distribution are drawn and for every sample the simplified fitting step and a prediction is performed.

  • These predictions are then used to identify and visualize the specified quantiles.

plot(fit, cr_bands = TRUE)

The bootstrap based quantiles can also be directly calculated via the getBootstrapQuantiles() function.

For this example, only 6 quantiles are bootstrapped for each model fit.

bootstrap_quantiles <- getBootstrapQuantiles(
  model_fits = fit,
  quantiles  = c(0.025, 0.5, 0.975),
  doses      = c(0, 2.5, 4, 5, 7, 10),
  n_samples  = 6
)
Code
reactable::reactable(
  data = bootstrap_quantiles,
  groupBy = "models",
  columns = list(
    doses = colDef(aggregate = "count", format = list(aggregated = colFormat(suffix = " doses"))),
    "2.5%" = colDef(aggregate = "mean", format = list(aggregated = colFormat(prefix = "mean = ", digits = 2), cell = colFormat(digits = 4))),
    "50%" = colDef(aggregate = "mean", format = list(aggregated = colFormat(prefix = "mean = ", digits = 2), cell = colFormat(digits = 4))),
    "97.5%" = colDef(aggregate = "mean", format = list(aggregated = colFormat(prefix = "mean = ", digits = 2), cell = colFormat(digits = 4)))
  )
)

Technical note: The median quantile of the bootstrap based procedure is not necessary similar to the main model fit, as they are derived via different procedures.

The main fit (black line) minimizes residuals for the posterior distribution, while the bootstrap median is the median fit of random sampling.

7 Additional note

Testing and modeling can also be combined via performBayesianMCPMod(), but this is not run here.

performBayesianMCPMod(
  posterior_list   = posterior,
  contr            = contr_mat,
  crit_prob_adj    = crit_pval,
  simple           = FALSE)
ClinicalTrials.gov. 2024. “NCT00735709.” https://clinicaltrials.gov/study/NCT00735709?term=NCT00735709&rank=1.
Fleischer F, Deng Q, Bossert S. 2022. “Bayesian MCPMod.” Pharmaceutical Statistics 21 (3): 654–70.
Wikipedia. 2024. “Nelder-Mead Method.” https://en.wikipedia.org/wiki/Nelder-Mead_method.