Adding true values to estimates for models with an exponential endpoint and no consideration of predictors of the intercurrent event
Source:R/true_vals_exp_nocovar.R
true_vals_exp_nocovar.Rd
Adding true values to estimates for models with an exponential endpoint and no consideration of predictors of the intercurrent event
Arguments
- x
Model object as returned by
fit_single_exp_nocovar()
.- d_params
List of data parameters as used in
fit_single_exp_nocovar()
.- m_params
List of model parameters as used in
fit_single_exp_nocovar()
.
Examples
d_params_nocovar <- list(
n = 500L,
nt = 250L,
prob_ice = 0.5,
fu_max = 336L,
T0T_rate = 0.2,
T0N_rate = 0.2,
T1T_rate = 0.15,
T1N_rate = 0.1
)
dat_single_trial <- sim_dat_one_trial_exp_nocovar(
n = d_params_nocovar[["n"]],
nt = d_params_nocovar[["nt"]],
prob_ice = d_params_nocovar[["prob_ice"]],
fu_max = d_params_nocovar[["fu_max"]],
T0T_rate = d_params_nocovar[["T0T_rate"]],
T0N_rate = d_params_nocovar[["T0N_rate"]],
T1T_rate = d_params_nocovar[["T1T_rate"]],
T1N_rate = d_params_nocovar[["T1N_rate"]]
)
m_params_nocovar <- list(
tg = 48L,
prior_piT = c(0.5, 0.5),
prior_0N = c(1.5, 5),
prior_1N = c(1.5, 5),
prior_0T = c(1.5, 5),
prior_1T = c(1.5, 5),
t_grid = seq(7, 7 * 48, 7) / 30,
chains = 2L,
n_iter = 3000L,
warmup = 1500L,
cores = 2L,
open_progress = FALSE,
show_messages = TRUE
)
# \donttest{
fit_single <- fit_single_exp_nocovar(
data = dat_single_trial,
params = m_params_nocovar,
summarize_fit = TRUE
)
print(fit_single)
tab_obs_truth <- true_vals_exp_nocovar(
x = fit_single,
d_params = d_params_nocovar,
m_params = m_params_nocovar
)
print(tab_obs_truth)
# }