Adding true values to estimates for models with an exponential endpoint and consideration of predictors of the intercurrent event
Source:R/true_vals_exp_covar.R
true_vals_exp_covar.Rd
Adding true values to estimates for models with an exponential endpoint and consideration of predictors of the intercurrent event
Arguments
- x
Model object as returned by
fit_single_exp_covar()
.- d_params
List of data parameters as used in
fit_single_exp_covar()
.- m_params
List of model parameters as used in
fit_single_exp_covar()
.
Examples
d_params_covar <- list(
n = 1000,
nt = 500,
prob_X1 = 0.4,
prob_ice_X1 = 0.5,
prob_ice_X0 = 0.2,
fu_max = 48*7,
T0T_rate = 0.2,
T0N_rate = 0.2,
T1T_rate = 0.15,
T1N_rate = 0.1
)
dat_single_trial <- sim_dat_one_trial_exp_covar(
n = d_params_covar[["n"]],
nt = d_params_covar[["nt"]],
prob_X1 = d_params_covar[["prob_X1"]],
prob_ice_X1 = d_params_covar[["prob_ice_X1"]],
prob_ice_X0 = d_params_covar[["prob_ice_X0"]],
fu_max = d_params_covar[["fu_max"]],
T0T_rate = d_params_covar[["T0T_rate"]],
T0N_rate = d_params_covar[["T0N_rate"]],
T1T_rate = d_params_covar[["T1T_rate"]],
T1N_rate = d_params_covar[["T1N_rate"]]
)
m_params_covar <- list(
tg = 48,
p = 2,
prior_delta = matrix(
c(0, 5, 0, 5),
nrow = 2, byrow = TRUE),
prior_0N = c(1.5, 5),
prior_1N = c(1.5, 5),
prior_0T = c(1.5, 5),
prior_1T = c(1.5, 5),
t_grid = seq(7, 7 * 48, 7) / 30,
chains = 2,
n_iter = 3000,
warmup = 1500,
cores = 2,
open_progress = FALSE,
show_messages = TRUE
)
# \donttest{
fit_single <- fit_single_exp_covar(
data = dat_single_trial,
params = m_params_covar,
summarize_fit = TRUE
)
print(fit_single)
tab_obs_truth <- true_vals_exp_covar(
x = fit_single,
d_params = d_params_covar,
m_params = m_params_covar
)
print(tab_obs_truth)
# }