Determine operating characteristics of fits from two-arm trials with an exponentially distributed time-to-event endpoint and one predictor of the intercurrent event
Source:R/ocs_exp_covar.R
ocs_exp_covar.Rd
Determine operating characteristics of fits from two-arm trials with an exponentially distributed time-to-event endpoint and one predictor of the intercurrent event
Arguments
- multiple_fits
List of model fits from
fit_mult_exp_covar
.- d_params
List of data parameters as used in
sim_dat_one_trial_exp_covar
.- m_params
List of model parameters as used in
fit_single_exp_covar
.
Value
A list of length 3, containing objects call ocs
, d_params
, m_params
, where ocs
is a tibble
containing averaged parameter estimates and operating characteristics, and d_params
and m_params
are the objects supplied to the function.
Details
This function is used in run_sim_exp_covar()
, the output of the two functions is the same.
Examples
d_params_covar <- list(
n = 1000,
nt = 500,
prob_X1 = 0.4,
prob_ice_X1 = 0.5,
prob_ice_X0 = 0.2,
fu_max = 48*7,
prop_cens = 0.15,
T0T_rate = 0.2,
T0N_rate = 0.2,
T1T_rate = 0.15,
T1N_rate = 0.1
)
dat_mult_trials <- sim_dat_mult_trials_exp_covar(
n_iter = 2,
params = d_params_covar
)
m_params_covar <- list(
tg = 48,
p = 2,
prior_delta = matrix(
c(0, 5, 0, 5),
nrow = 2, byrow = TRUE),
prior_0N = c(1.5, 5),
prior_1N = c(1.5, 5),
prior_0T = c(1.5, 5),
prior_1T = c(1.5, 5),
t_grid = seq(7, 7 * 48, 7) / 30,
chains = 2,
n_iter = 3000,
warmup = 1500,
cores = 2,
open_progress = FALSE,
show_messages = TRUE
)
# \donttest{
fit_multiple <- fit_mult_exp_covar(
dat_mult_trials = dat_mult_trials,
params = m_params_covar,
seed = 12
)
list_ocs <- ocs_exp_covar(
multiple_fits = fit_multiple,
d_params = d_params_covar,
m_params = m_params_covar
)
print(list_ocs)
# }