Fit multiple models to data from two-arm trials with an exponentially distributed time-to-event endpoint and one predictor of the intercurrent event
Source:R/fit_mult_exp_covar.R
fit_mult_exp_covar.Rd
Fit multiple models to data from two-arm trials with an exponentially distributed time-to-event endpoint and one predictor of the intercurrent event
Arguments
- dat_mult_trials
List generated by
sim_dat_mult_trials_exp_covar
.- params
List of model parameters as supplied to
fit_single_exp_covar
.- seed
Numeric value, seed for reproducibility.
Examples
d_params_covar <- list(
n = 1000,
nt = 500,
prob_X1 = 0.4,
prob_ice_X1 = 0.5,
prob_ice_X0 = 0.2,
fu_max = 48*7,
prop_cens = 0.15,
T0T_rate = 0.2,
T0N_rate = 0.2,
T1T_rate = 0.15,
T1N_rate = 0.1
)
dat_mult_trials <- sim_dat_mult_trials_exp_covar(
n_iter = 2,
params = d_params_covar
)
m_params_covar <- list(
tg = 48,
p = 2,
prior_delta = matrix(
c(0, 5, 0, 5),
nrow = 2, byrow = TRUE),
prior_0N = c(1.5, 5),
prior_1N = c(1.5, 5),
prior_0T = c(1.5, 5),
prior_1T = c(1.5, 5),
t_grid = seq(7, 7 * 48, 7) / 30,
chains = 2,
n_iter = 3000,
warmup = 1500,
cores = 2,
open_progress = FALSE,
show_messages = TRUE
)
# \donttest{
fit_multiple <- fit_mult_exp_covar(
dat_mult_trials = dat_mult_trials,
params = m_params_covar,
seed = 12
)
lapply(fit_multiple, dim)
head(fit_multiple[[1]])
# }